CHEMISTRY 534 ANSWERS EXAM #1 JUNE 2009

Since the volumes, temperatures, and pressures of the two gases are the same, the moles of the two gases must also be the same.

Calculate the mass of nitrogen gas:

Mass in cylinder n° 1: 45.317 kg - 45.205 kg= 0.112 kg = 112 g

Calculate the number of moles of nitrogen gas.

Molar mass of nitrogen gas:	2 × 14.01 = 28.02 g/mol	
Moles of nitrogen gas:	$\frac{\text{mass of nitroger}}{\text{molar mass of nitroger}}$ $= \frac{112 \text{ g}}{28.02 \text{ g/mol}}$ $= 4.00 \text{ mol}$	n gas ogen gas
Moles of carbon dioxide gas	= moles of nitrogen g = 4.00 mol	jas
Calculate mass of carbon did	oxide gas.	
Molar mass of carbon dioxid	e gas: 12.01 + 2(* = 44.01 g/mo	16.00) I
Mass of carbon dioxide gas	= moles of carbon die = 4.00 mol × 44.01 g =176 g or 0.176 kg	oxide \times molar mass of carbon dioxide /mol
Mass of cylinder filled with ca	arbon dioxide gas:	0.176 kg + 48.112 kg = 48.288 kg

Answer: The mass of the filled cylinder of carbon dioxide gas is 48.288 kg.

Mass of gas sample

$$d = \frac{m}{V}$$

$$m = d \times V$$

$$m = 6.00 \text{ g/L} \times 0.0973 \text{ L}$$

$$m = 0.584 \text{ g of gas}$$

Moles of gas in sample

$$n = \frac{PV}{RT}$$

$$n = \frac{(100.0 \text{ kPa})(0.0973 \text{ L})}{(8.31 \text{ kPa} \bullet \text{L/mol} \bullet \text{K})(293 \text{ K})}$$

$$n = 0.00399 \text{ moles}$$

Molar mass of sample

molar mass
$$= \frac{\text{mass}}{\text{moles}}$$

 $= \frac{0.584 \text{ g}}{0.00399 \text{ moles}}$
 $= 146 \text{ g/mol}$

Molar mass of SF₆

 $\begin{array}{ll} \mbox{Molar mass of S} &= 32 \mbox{ g/mol} \\ \mbox{Molar mass of F} &= 19 \mbox{ g/mol} \\ \mbox{Molar mass of SF}_6 &= (32 + 6 \times 19) \mbox{ g/mol} \\ &= 146 \mbox{ g/mol} \end{array}$

Gas A

If the gas is ideal, then $P \times V$ will be constant.

100 × 25.0 = 2500 125 × 20.0 = 2500 200 × 12.5 = 2500

Behaviour of Gas A

ldeal ____∕____

Non–ideal _____

Gas B

If the gas is ideal, then $\frac{P}{T}$ will be constant. $\frac{100}{(21+273)} = 0.34$ $\frac{200}{(42+273)} = 0.63$ $\frac{300}{(63+273)} = 0.89$

Behaviour of Gas B

ldeal _____ Non–ideal ____∕

Gas C

Gas C is an ideal gas if $\frac{V}{T}$ is constant. $\frac{2.4}{(27+273)} = 0.008$ $\frac{2.6}{(52+273)} = 0.008$ $\frac{2.8}{(77+273)} = 0.008$

Behaviour of Gas C

Ideal ___√___

Non-ideal _____

Number of moles of sulphuric acid

 $n = c \times V$ $n = 18 \text{ mol/L} \times 5.0 \times 10^2 \text{ L}$ $n = 9.0 \times 10^3 \text{ mol of } H_2\text{SO}_4$

Number of moles of hydrogen gas produced Since the mole ratio is 1:1 then, Mol of hydrogen gas = 9.0×10^3 mol Volume of hydrogen gas produced

$$V = \frac{(n \times R \times T)}{P}$$
$$V = \frac{(9.0 \times 10^3 \text{ mol})(8.31 \text{ kPa} \bullet \text{L/mol} \bullet \text{k})(292 \text{ K})}{100.8 \text{ kPa}}$$
$$V = 2.2 \times 10^5 \text{ L}$$

Example of an appropriate and complete solution

Enthalpy of activated complex

-235 kJ/mol + 368 kJ/mol = 133 kJ/mol

Enthalpy of products

19

/4

/4

5

Heat of combustion of propane

20

$$\begin{array}{cccc} C_{3}H_{8(g)} & \rightarrow & 3C_{(s)} + & 4H_{2(g)} \\ 3C_{(s)} + & 3O_{2(g)} & \rightarrow & 3CO_{2(g)} \\ 4H_{2(g)} + & 2O_{2(g)} & \rightarrow & 4H_{2}O_{(g)} \end{array} \qquad \Delta H = -393.5 \ \frac{kJ}{mol} \times 3 & = -1180.5 \ \frac{kJ}{mol} \\ \Delta H = -242.0 \ \frac{kJ}{mol} \times 4 & = -968.0 \ \frac{kJ}{mol} \\ \end{array}$$

 $C_3H_{8(g)}$ + 5 $O_{2(g)}$ \rightarrow 3 $CO_{2(g)}$ + 4 $H_2O_{(g)}$

$$= -2044.8 \frac{\text{KJ}}{\text{mol}}$$

The heat produced for 1 mole of carbon dioxide produced is $\frac{2044.8 \text{ kJ}}{3}$ = 681.6 $\frac{\text{kJ}}{\text{mol}}$ of CO₂.

Heat of combustion of gasoline

$C_8H_{18(g)}$	\rightarrow 8C _(s) + 9 H _{2(g)}	$\Delta H = +208.4 \frac{\text{kJ}}{\text{mo}}$	$\frac{J}{d} \times 1 =$	= + 208.4	$\frac{kJ}{mol}$
8 C _(s) + 8 O _{2(g)}	$\rightarrow 8 CO_{2(g)}$	$\Delta H = -393.5 \frac{\text{kJ}}{\text{mo}}$	$\frac{1}{2} \times 8 =$	-3148.0	kJ mol
9 H _{2(g)} + 4.5 O ₂	$_{(g)} \rightarrow 9 H_2O_{(g)}$	$\Delta H = -242.0 \frac{\text{kJ}}{\text{mc}}$	$\frac{1}{2} \times 9 =$	-2178.0	$\frac{kJ}{mol}$
$C_8H_{18(g)}$ + 12.5	$O_{2(g)} \rightarrow 8 CO_{2(g)} + 9 H_2($	D _(g)	=	= - 5117.6	$\frac{kJ}{mol}$
The heat produc	ed for 1 mole of carbon die	oxide produced is	$\frac{5117.6 \text{ kJ}}{8}$	= 639.7	$\frac{kJ}{mol}$ of CO ₂ .

Difference in heat produced for 1 mole of carbon dioxide 681.6 kJ/mol – 639.7 kJ/mo = 41.9 kJ/mol

Answer: The combustion of propane provides **41.9 kJ/mol** more energy per mole of CO₂ than the combustion of gasoline.

Calculate the quantity of heat absorbed by the water in the calorimeter.

$$Q = mc\Delta T$$

$$Q = 500g \times 4.19J/g/^{\circ}C \times 30.0^{\circ}C$$

$$= 62\ 850\ J\ (62.85\ kJ)$$

Calculate the ΔH per mole of ethanol burned.

Moles of ethanol
$$= \frac{\text{mass of ethanol}}{\text{molar mass of ethanol}}$$
$$= \frac{2.30 \text{ g}}{46 \text{ g/mol}}$$
$$= 0.05 \text{ mol}$$

$$\Delta H = -\frac{Q}{n}$$
$$= -\frac{62.85 \text{ kJ}}{0.05 \text{ mol}}$$
$$= -1257 \frac{\text{kJ}}{\text{mol}}$$

21

If the sample was 100% pure ethanol, then the $\Delta H = -1367 \frac{\text{kJ}}{\text{mol}}$

$$\frac{-1257}{-1367} = 92\%$$

92% of the heat was released, therefore it is 92% pure.

Answer: The sample is an acceptable biofuel.

Calculate the heat gained by the water.

$$\begin{array}{ll} Q_{\text{water}} &= m \bullet c \bullet \Delta T \\ &= 250 \text{ g} \times 4.19 \text{ J/g} \bullet^{\circ} \text{C} \times (30.7 - 25.0)^{\circ} \text{C} \\ &= 5970.75 \text{ J} \\ &= 5.971 \text{ kJ} \end{array}$$

Calculate the moles of solid used.

NaCl

Molar mass = (22.99 + 35.45)g/molMoles NaCl = $\frac{mass}{molar mass}$ Moles NaCl = $\frac{4.67 g}{58.44 g/mol}$ = 0.0799 mol

Calculate the heat of solution in kJ/mol.

$$\Delta H = -\frac{Q}{n}$$
$$= -\frac{5.971 \text{ kJ}}{0.0799 \text{ mol}}$$
$$= -74.72 \frac{\text{kJ}}{\text{mol}}$$

Answer: The solid is NaCl.

23

Volume of nitrogen dioxide produced in 90.0 minutes

$$\frac{25 \text{ mL}}{(1000 \text{ mL/L})} = 0.025 \text{ L}$$

Calculate, using the Ideal Gas Law, the moles consumed

$$n = \frac{P \bullet V}{R \bullet T}$$

=
$$\frac{(101.9 \text{ kPa} \bullet 0.025 \text{ L})}{\left(\frac{8.31 \text{ kPa} \bullet \text{ L}}{\text{mol} \bullet \text{ K}}\right) \bullet (20.5 + 273^{\circ} \text{ K})}$$

=
$$1.0 \times 10^{-3} \text{ mol}$$

Since this is a 1:2 ratio, the moles of copper consumed = $2 \times$ moles of nitrogen dioxide produced.

= $2.0 \times 10^{-3} \text{ mol } Cu_{(s)}$

Molar mass of copper

63.55 g/mol

Mass of copper

(63.55 g/mol) • (2.0 × 10⁻³ mol) = 1.3×10^{-1} g

Rate of consumption of copper

$$\frac{1.32 \times 10^{-1} \text{g}}{90.0 \text{ min}}$$
$$= \frac{1.4 \times 10^{-3} \text{g}}{\text{min}}$$
r: The avera

Answer: The average rate of consumption of copper during the first 90.0 minutes is $\frac{1.4 \times 10^{-3} \text{ g}}{1.4 \times 10^{-3} \text{ g}}$.

4 marks Appropriate and complete procedure.

24 Example of appropriate and complete responses

Use powdered Magnesium.

The use of powdered magnesium increases the surface area of the magnesium. A greater surface area results in more collisions between the molecules, which results in a greater reaction rate.

- Increase the concentration of the HCI.
 A higher concentration of reactants results in more collisions between the molecules, which results in a greater reaction rate.
- Use HCl that has been heated. Raising the temperature of the molecules causes the molecules to move faster, which results in more collisions. It also means that the molecules have more kinetic energy, which makes the collisions more likely to be effective. Therefore increasing the temperature increases the reaction rate.
- 4. Add a catalyst.

1.

A catalyst provides a reaction pathway with a lower activation energy, which makes the collisions more likely to be effective. Therefore, the presence of a catalyst increases the reaction rate.

25 Example of an appropriate and complete solution

Example 2 Example 1 Change in H₂ concentration between [NH₃] at 30 seconds 30 s and 120 s: H_2 consumed = 10.0 mol/L - 7.0 mol/L = 3.0 mol/L3.4 mol/L - 7.0 mol/L = -3.6 mol/L H_2 consumed: NH_3 produced = 3:2 $NH_3: H_2 = 2:3$ Therefore, NH_3 produced = 2 mol/L Change in concentration of NH₃ between 30 s and 120 s: [NH₃] at 120 seconds $3.6 \text{ mol/L} \times \frac{2}{3} = 2.4 \text{ mol/L}$ H_2 consumed = 10.0 mol/L - 3.4 mol/L = 6.6 mol/LAverage rate of production of NH₃: H_2 consumed: NH_3 produced = 3:2 change in conentration of NH₃ Therefore, NH_3 produced = 4.4 mol/L change in time Rate of production of ammonia $=\frac{2.4 \text{ mol}/\text{L}}{90 \text{ s}}$ = $\frac{\text{change in concentration of NH}_3}{2}$ change in time 0.027 mol/L $=\frac{(4.4 \text{ mol/L} - 2.0 \text{ mol/L})}{(120 \text{ s} - 30 \text{ s})}$ $=\frac{2.4 \text{ mol}/\text{L}}{90 \text{ s}}$ $= \frac{0.027 \text{ mol}/\text{L}}{2}$

Answer: The average rate of production of ammonia between 30 seconds and 120 seconds is 0.027 mol/L/s.

/4

	SO ₂	O ₂	SO₃
Initial Concentration	0.875 mol/L	0.625 mol/L	0
Change in concentration	-0.8 mol/L	-0.4 mol/L	+0.8 mol/L
Equilibrium Concentration	0.075	0.225 mol/L	0.8 mol/L

The change in concentration of SO₃ was 0.8 mol/L.

Using the mole ratio of O_2 : SO₃ as 1:2, the change in concentration of O_2 is 0.4 mol/L. Using the mole ratio of O_2 : SO₂ as 1:1, the change in concentration of O_2 is 0.8 mol/L.

$$\mathcal{K}_{eq} = \frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$$

26

$$\kappa_{\rm eq} = \frac{[0.8]^2}{[0.075]^2 [0.225]}$$

Answer: The equilibrium constant, K_{eq} , is **5.1** × **10**².

Example of an appropriate and complete solution Molar mass of hydrogen fluoride

1.01 g/mol + 19.00 g/mol = 20.01 g/molMoles of hydrogen fluoride $\frac{40.0 \text{ g}}{20.01 \text{ g/mol}}$ = 2.00 mol

Initial concentration of the acid $\frac{2.0 \text{ mol}}{4.0 \text{ L}}$

Since this is a weak acid, we can state the following:

$$Ka = \frac{x^2}{[HF]}$$
 where x is the molar concentration of H⁺ and F⁻ at equilibrium

[HF] is the initial molar concentration of the acid

$$7.2 \times 10^{4} = \frac{x^{2}}{0.500 \text{ mol/L}}$$

$$x = 1.897 \times 10^{-2}$$
pH
$$= -\log [\text{H}^{+}]$$

$$= -\log (1.897 \times 10^{-2})$$

$$= 1.72$$

Answer: The pH of the hydrofluoric acid solution is **1.72**.

/4

HA _(aq)	\leftrightarrow	$H^{+}_{(aq)}$	+	$A^{-}_{(aq)}$
0.10 mol/L		0 mol/L		0 mol/L

-0.0020 mol/L +0.0020 mol/L + 0.0020 mol/L + 0.0020 mol/L 0.0020 mol/L

$$\begin{split} \mathcal{K}_{a} &= \frac{\left(0.0020 \text{ mol/L}\right)^{2}}{0.098 \text{ mol/L}}\\ \mathcal{K}_{a} &= 4.1 \times 10^{-5} \end{split}$$

Acid HB

28

$$K_{a} = \frac{(1.3 \times 10^{-4} \text{ mol/L})^{2}}{0.074 \text{ mol/L}}$$
$$K_{a} = 2.3 \times 10^{-7}$$

Acid HC

29

$$K_{\rm a} = 4.9 \times 10^{-7}$$

Answer: In order of increasing strength, the acids are HB, HC, HA.

Example of an appropriate and complete solution

a)
$$2 \operatorname{Ag}^+_{(\operatorname{aq})} + \operatorname{Mg}_{(\operatorname{s})} \rightarrow \operatorname{Mg}^{2+}_{(\operatorname{aq})} + 2 \operatorname{Ag}_{(\operatorname{s})}$$
 1 mark

- b) The E° value is: +3.17 V 1 mark
- c) The reducing agent is magnesium.

d) magnesium

EXAM #2 JUNE 2008

Example of an appropriate and complete solution

Determine the molar mass of Cl₂

2 × 35.45 g/mol = **70.90 g/mol**

Determine the molar mass of NH₃

14.01 g/mol + 3 × 1.01 g/mol = **17.04 g/mol**

Answer: The students at the high school will smell the ammonia gas first because its lower molar mass permits it to diffuse at a faster rate.

= 84.0 ÷ 28.02 g/mol = 3.00 moles

Volume of the tire

$$= \frac{nRT}{P}$$
$$= \frac{3.00 \text{ mol} \times 8.31 \text{ kPa} \bullet \text{L/mol} \bullet \text{K} \times 296 \text{ K}}{315 \text{ kPa}}$$
$$= 23.4 \text{ L}$$

After leaking: number of moles

$$= \frac{PV}{RT}$$
$$= \frac{235 \text{ kPa} \times 23.4 \text{ L}}{8.31 \text{ kPa} \bullet \text{ L/mol} \bullet \text{K} \times 288 \text{ K}}$$
$$= 2.30 \text{ moles}$$

Mass present

2.30 moles × 28.02 g/mol = 64.4 g

Answer: The mass of nitrogen gas that remained in the tire is 64.4 g.

17

Molar mass of NaClO3

22.99 + 35.45 + 3 (16.00) = 106.44 g/mol

Number of moles of NaClO₃

 $\frac{3.42 \text{ g}}{106.44 \text{ g/mol}} = 0.0321 \text{ mol}$

Number of moles of O2 produced

$$(0.0 321 \text{ mol}) \times \frac{3}{2} = 0.0482 \text{ mol}$$
$$R = \frac{PV}{nT}$$
$$= \frac{102.5 \text{ kPa} \times 1.24 \text{ L}}{0.0482 \text{ mol} \times 347 \text{ K}}$$
$$= 7.60 \frac{\text{kPa} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

Answer: The experimental value of the universal gas constant is $7.60 \frac{\text{kPa} \cdot \text{L}}{1000}$

Example of an appropriate and complete solution

Number of moles of NH₃

18

19

PV = nRT(101.3 kPa)(85 000 L) = n(8.31 kPa•L/mol•K)(273 K) = 3 800 mol NH₃ n

Number of moles of (NH₄)₂SO₄

 $2 \text{ mol } \text{NH}_3 = 1 \text{ mol } (\text{NH}_4)_2 \text{SO}_4$ 3 800 mol NH₃ = 1 900 mol (NH₄)₂SO₄

Convert to mass

1 900 mol (NH₄)₂SO₄ 132.17 g/mol = 251 000 g or 251 kg Х

Answer: The mass of ammonium sulfate that can be produced from 85.0 kL of ammonia gas at STP is 251 000 g or 251 kg.

Example of an appropriate and complete solution

Application of Hess' law

 $NaOH_{(aq)} \rightarrow NaOH_{(s)}$ $\Delta H = +$ 44.2 kJ $NaOH_{(s)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)}$ $\Delta H = -100.1 \text{ kJ}$ $NaOH_{(aq)}$ + $HCI_{(aq)}$ \rightarrow $NaCI_{(aq)}$ + $H_2O_{(I)}$ $\Delta H = -55.9 \text{ kJ}$

Determining the heat generated by the heat of neutralization

- $Q_{\text{neutralization}} = + Q_{\text{water}}$ = - (m_{water}) (C_{water}) (ΔT_{water}) Q_{neutralization} $= -(300.0 \text{ g})(4.19 \text{ J/g}^{\circ}\text{C})(38.0^{\circ}\text{C} - 25.0^{\circ}\text{C})$ = - 16341 J = - 16.3 kJ

Determining the number of moles

$$\frac{-55.9 \text{ kJ}}{1 \text{ mol}} = \frac{-16.3 \text{ kJ}}{x}$$

x = 0.292 mol

Answer: The number of moles of NaOH used in the third experiment is **0.292**.

15

/4

$$\Delta H = \frac{mc\Delta T}{n}$$

$$n = \frac{3.84 \text{ g}}{138.17 \text{ g/mol}}$$

= 0.0278 mol

$$3.02 \times 10^3 \text{ J/mol} = \frac{(100 \text{ g})(4.19 \text{ J/g}^\circ\text{C})(\Delta T)}{0.0278 \text{ mol}}$$

$$\Delta T = 2.01 \times 10^{-1} \,^{\circ}\mathrm{C}$$

Answer: The change in the temperature (ΔT) of the water is **2.01** × **10**⁻¹ °C or **0.201**°C.

$$-Q_{\text{water}} = +Q_{\text{stones}}$$

 $-mc\Delta T = + mc\Delta T$

 $-m (4.19 \text{ J/g}^{\circ}\text{C}) (63^{\circ}\text{C} - 100.0^{\circ}\text{C}) = + (3.0 \times 10^{3} \text{ g}) (0.84 \text{ J/g}^{\circ}\text{C}) (63^{\circ}\text{C} - 21.0^{\circ}\text{C})$

m (155.03 J/g) = 105840 J

т

$$= \frac{105\ 840\ J}{155.03\ J/g}$$
$$= 6.8 \times 10^2\ g$$

Since the density of water is 1.0 g/mL, the volume is 6.8×10^2 mL = 0.68 L

Answer: The volume of boiling water that must be prepared is $0.68 \text{ L or } 6.8 \times 10^2 \text{ mL or } 680 \text{ mL}.$

16

/4

23

$C_{(s)} \ + \ O_{2(g)} \ \rightarrow \ CO_{2(g)}$	$\Delta H = -394.1 \text{ kJ/mol}$	$\text{multiply} \times 6$
$6 \; C_{(s)} \; + \; 6 \; O_{2 (g)} \; \rightarrow \; 6 \; CO_{2(g)}$	Δ <i>H</i> = -2364.6 kJ/mol	
$H_2O_{(l)} \ \rightarrow \ H_{2(g)} \ + \ {}^{1\!\!\!/}_{2} \ O_{2(g)}$	$\Delta H = + 286.2 \text{ kJ/mol}$	reverse \times 6
$6 H_{2(g)} + 3 O_{2(g)} \rightarrow 6 H_2O_{(l)}$	Δ <i>H</i> = -1717.2 kJ/mol	
$6 \ C_{(s)} \ + \ 6 \ H_{2(g)} \ + \ 3 \ O_{2(g)} \ \rightarrow \ C_6 H_{12} O_{6(s)}$	Δ <i>H</i> = - 1274.5 kJ/mol	reverse
$C_6 H_{12} O_{6(s)} \ \rightarrow \ 6 \ C_{(s)} \ + \ 6 \ H_{2(g)} \ + \ 3 \ O_{2(g)}$	Δ <i>H</i> = + 1274.5 kJ/mol	
Add		
$6 C_{(s)} \textbf{+} 6 O_{2(g)} \rightarrow 6 CO_{2(g)}$	$\Delta H = -2364.6 \text{ kJ/mol}$	
$6 H_{2(g)} \text{+} 3 O_{2(g)} \rightarrow 6 H_2O_{(I)}$	Δ <i>H</i> = -1717.2 kJ/mol	
$C_6 H_{12} O_{6(s)} \ \rightarrow \ 6 \ C_{(s)} \ + \ 6 \ H_{2(g)} \ + \ 3 \ O_{2(g)}$	$\Delta H = + 1274.5 \text{ kJ/mol}$	
$\overline{C_6 H_{12} O_{6(s)} \ + \ 6 \ O_{2(g)} \ \rightarrow \ 6 \ CO_{2(g)} \ + \ 6 \ H_2 O_{(l)}}$	$\Delta H = -2807.3 \text{ kJ/mol}$	

Number of moles $C_6H_{12}O_{6(s)} = 90.0 \text{ g/180 g/mol} = 0.500 \text{ mol}$ = 0.500 mol 2807.3 kJ/mol × 0.500 mol = **1403.7 kJ**

Answer: The amount of heat produced by the combustion of 90.0 g of glucose is 1403.7 kJ.

Example of an appropriate and complete solution

1. Increase the concentration of the HCI.

Explanation: A greater concentration of HCI will result in more collisions with the oxygen

gas, resulting in a greater rate of reaction.

2. Increase the concentration of oxygen gas. (Increase the pressure on the system by adding oxygen or decrease the volume of the container.)

Explanation: A greater concentration of oxygen gas will result in more collisions with the

HCl, resulting in a greater rate of reaction.

Answer continued on next page...

3. Add a catalyst.

Explanation: Adding a catalyst will lower the activation energy allowing a greater percentage of the collisions to be effective and lead to the formation of the products.

OR

Adding a catalyst provides an alternative pathway for the reaction and so effective collisions occur more readily and therefore more quickly.

4. Increase the temperature.

Explanation: Increasing the temperature increases the speed of the molecules, which results in more collisions per second. It also means that the reacting molecules have greater kinetic energy and will be able to reach the activation energy needed more often resulting in a greater rate of reaction.

Mass of hydrogen at 5 s

24

0.08 g

Mass of hydrogen at 25 s

0.12 g

Mass of hydrogen produced between 5 s and 25 s

0.12 - 0.08 = 0.04 g

Mass of silver consumed

$$\frac{0.04 \text{ g of } \text{H}_2}{2.02 \text{ g/mol}} \times \frac{2 \text{ Ag}}{1 \text{ H}_2} \times 107.87 \text{ g/mol} = 4 \text{ g}$$

Average rate of consumption of Ag

$$\frac{4 \text{ g}}{20 \text{ s}} = 0.2 \text{ g/s}$$

Answer: The average rate of consumption of silver between 5 s and 25 s is **0.2 g/s**.

Initially, [HCI]

 $10^{-1.00}$ mol/L = 0.100 mol/L

Number of moles of HCl

0.100 mol

At 25 s, [HCI]

 $10^{-2.00}$ mol/L = 0.0100 mol/L

Number of moles of HCI

0.0100 mol

Number of moles of HCl used in 25 s

0.100 - 0.0100 = 0.090 mol

Moles of CO₂ produced

$$0.090 \text{ mol} \times \frac{1 \text{ CO}_2}{2 \text{ HCl}} = 0.045 \text{ mol} \text{ CO}_2$$

Rate of formation of CO₂

 $\frac{0.045 \text{ mol}}{25 \text{ s}} = 0.0018 \text{ mol/s}$

Answer: The average rate of formation of carbon dioxide gas was 0.0018 mol/s.

Note: Accept the answer 0.079 g/s also.

Example of an appropriate and complete solution

1. Cool the system. Because the system is exothermic, decreasing the temperature will shift the equilibrium to produce more heat and therefore favour the products.

- 2. Decrease the pressure or increase the volume of the system. The reaction will shift to the side with the more gas molecules (products).
- 3. Remove oxygen from the system. This will cause the system to shift towards the products to replace the oxygen that has been removed.
- 4. Increase the concentration of hydrogen peroxide. This will shift the system to the products to use up the added reactant.

Allot 1 mark for each correct response and appropriate explanation.

26

[SO ₂]	[O ₂]	[SO ₃]
--------------------	-------------------	--------------------

Initial $1.20 \text{ mol} \div 4.0 \text{ L} = 0.30 \text{ mol/L}$ Change0.10 - 0.30 = -0.20 mol/LEquilibrium $0.40 \text{ mol} \div 4.0 \text{ L} = 0.10 \text{ mol/L}$

 $\begin{array}{ll} 1.00 \mbox{ mol} \div 4.0 \mbox{ L} = 0.25 \mbox{ mol/L} & 0 \mbox{ mol/L} \\ - \ 0.20 \times 1/2 = - \ 0.10 \mbox{ mol/L} & + 0.20 \mbox{ mol/L} \\ 0.25 - \ 0.10 = 0.15 \mbox{ mol/L} & 0.20 \mbox{ mol/L} \end{array}$

$$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]}$$
$$= \frac{0.20^{2}}{0.10^{2} \times 0.15}$$
$$= 27$$

Answer: The value of the equilibrium constant, K_c , for this reaction is **27**.

28	RICE table	Reaction: Cl	H ₃ COOH (aq)	$H^{+}_{(aq)}$	$CH_3COO^{(aq)}$	/4
		Initial:	0.30	0	0	
		Change:	- <i>X</i>	+ <i>x</i>	+ <i>X</i>	
		Equilibrium	0.30	x	x	

Put into equilibrium expression:

$$1.8 \times 10^{-5} = \frac{(x)(x)}{0.30}$$

$$x = 2.3 \times 10^{-3} \text{ mol/l}$$

= [H⁺]

Find pH

–log [H⁺] = 2.6

Answer: The pH of the solution of acetic acid is 2.6.

29

1. The balanced net equation for this cell is

- 2. The E° value is: 0.77 V + 0.76 V = 1.53 V
- 3. The oxidizing agent is $Fe^{3+}_{(aq)}$
- 4. No

Increasing the concentration of Zn^{2+} will shift the reaction towards the left, which would lower the E° value, and would decrease the reduction of iron(III) ions.

20

/4

CHEMISTRY 534 ANSWERS EXAM #3 JUNE 2007

Example of an appropriate and complete solution

P = 12 books *k* = 90.0 books • mL *V* = ?

Find V

 $PV = \frac{k}{P}$ $= \frac{90.0 \text{ books} \bullet \text{mL}}{12 \text{ books}}$ = 7.50 mL

Answer: When 12 books are placed on the syringe, the volume will be 7.50 mL.

Example of an appropriate and complete solution

$$T = 20.0 + 273$$

= 293 K
$$V = 468 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}$$

= 0.468 L
$$(1.27 \text{ g KCIO}_3) \times \left(\frac{1 \text{ mol}}{122.45 \text{ g}}\right) = 0.01 \text{ mol KCIO}_3$$

$$(0.01 \text{ mol KCIO}_3) \times \left(\frac{3 \text{ mol } O_2}{2 \text{ mol KCIO}_3}\right) = 0.016 \text{ mol } O_2$$

$$PV = nRT$$

$$R = \frac{PV}{nT}$$

$$= \frac{(94.7)(0.468)}{(0.016)(293)}$$

$$= 9.45 \frac{\text{kPa} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

Answer: The gas cannot be considered an ideal gas.

17

Example of an appropriate and complete solution

P = 98.0 kPa V = 334 mL n = ? $R = 8.31 \frac{\text{kPa} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ T = 20.0 °C 334 mL = 0.334 L 20.0 + 273 = 293 KContinued on next page...

$$PV = nRT$$

$$n = \frac{PV}{RT}$$

$$= \frac{(98.0 \text{ kPa})(0.334 \text{ L})}{(8.31 \frac{\text{kPa} \cdot \text{L}}{\text{mol} \cdot \text{K}})(293 \text{ K})}$$

$$= 0.0134 \text{ mol}$$

$$m_{\text{(gas)}} = m_{\text{(flask + gas)}} - m_{\text{(flask)}}$$

$$= 51.96 \text{ g} - 51.02 \text{ g}$$

$$= 0.94 \text{ g}$$

$$mm = \frac{m_{\text{(gas)}}}{n_{\text{(gas)}}}$$

Gas	Molar mass g/mol
CH_4	16.01
CO ₂	44.01
O ₃	48
CHF₃	70.02
CF ₄	88.01

$$mm = \frac{m_{(\text{gas})}}{n_{(\text{gas})}}$$

$$=\frac{0.94 g}{0.0134 mol}$$

= 70.2 g/mol

Answer: The unknown gas is most likely CHF₃ because its molar mass is closest to 70.2 g/mol.

18

Example of an appropriate and complete solution Using

$$PV = nRT$$

$$n = \frac{PV}{RT}$$

$$n = \frac{(100 \text{ kPa} \times 0.1741 \text{ L})}{[8.31 \text{ (kPa L/mol K)} \times (273 + 30.0 \text{ °C})]}$$

$$n = 0.00691 \text{ moles of hydrogen}$$

Since the number of moles of hydrogen and magnesium are equivalent,

then

(0.00691 mol Mg)
$$\left(\frac{24.31 \text{ g}}{1 \text{ mol Mg}}\right) = 0.1679 \text{ g}$$

= 0.168 g of Mg used

$$Q = mc\Delta T$$

= (225 g + 375 g)(4.19 J/g °C)(30.0 °C)
= 75 420 J

$$C = \frac{n}{V}$$
$$1 = \frac{n}{0.225}$$
$$n = 0.225 \text{ mol}$$

Molar heat

 $\frac{75.42 \text{ kJ}}{0.225 \text{ mol}} = 335.2 \text{ kJ/mol}$

Answer: The molar heat of nitric acid, HNO₃ is **–335** kJ/mol.

Example of an appropriate and complete solution

Reverse equation (3) and change sign for ΔH :

$$C_2H_5OH_{(l)} \rightarrow 2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \quad \Delta H = +278 \text{ kJ}$$

Select equation (2) and not (4) since the former contains the needed liquid H₂O. Multiply by 3.

$$3 H_{2(g)} + \frac{3}{2} O_{2(g)} \rightarrow 3 H_2 O_{(l)}$$
 $\Delta H = 3(-285)$
= -855 kJ

Double equation (1)

$$2 C_{(s)} + 2 O_{2(g)} \rightarrow 2 CO_{2(g)}$$
 $\Delta H = -2(394) \text{ kJ}$
= -788 kJ

Sum:

$$C_2H_5OH_{(l)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)} \qquad \Delta H = -1365 \text{ kJ}$$

This is for 1 mole of C_2H_5OH .

We want -5509 kJ
$$\left(\frac{\text{mole}}{-1365 \text{ kJ}}\right)$$
 = 4.0 moles C₂H₅OH_(*t*)
4.0 moles C₂H₅OH_(*t*) × $\frac{46 \text{ g}}{\text{mole}}$ = 184 g of ethanol

Answer: **184 g** of ethanol is required to produce the same amount of energy as 1 mole of octane.

19

20

$$Q = mc\Delta T$$

= (50.0 g)(4.19 J/g °C)(2.7 °C)
= 566 J (0.566 kJ)
$$n = \frac{m}{mm}$$

= $\frac{0.200 \text{ g}}{65.39 \text{ g/mol}}$
= 0.00306 mol
$$\Delta H = \frac{-Q}{n}$$

= $\frac{-0.566 \text{ kJ}}{0.00306 \text{ mol}}$
= -185 kJ/mol

21

$$Q = mc\Delta T$$

= (50.0 g)(4.19 J/g °C)(2.1 °C)
= 440 J (0.440 kJ)

$$n = \frac{m}{mm}$$
$$= \frac{0.390 \text{ g}}{81.4 \text{ g/mol}}$$
$$= 0.00479 \text{ mol}$$

$$\Delta H = \frac{-Q}{n}$$
$$= \frac{-0.440 \text{ kJ}}{0.00479 \text{ mol}}$$
$$= -91.9 \text{ kJ/mol}$$

Hess' Law

 $Zn_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow ZnO_{(s)}$ $\Delta H = -379 \text{ kJ/mol}$

22 Example of an appropriate and complete solution

Using heat lost (Q lost) = heat gained (Q gained)

$$-(80.5 \text{ g})(\text{c})(23.8^{\circ}\text{C} - 95.7^{\circ}\text{C}) = (105 \text{ g})(4.19 \text{ J/g }^{\circ}\text{C})(23.8^{\circ}\text{C} - 15.6^{\circ}\text{C})$$
$$-(80.5 \text{ g})(\text{c})(-71.9^{\circ}\text{C}) = (105 \text{ g})(4.19 \text{ J/g }^{\circ}\text{C})(8.2^{\circ}\text{C})$$
$$\text{c} = \frac{(105 \text{ g})(4.19 \text{ J/g }^{\circ}\text{C})(8.2^{\circ}\text{C})}{(80.5 \text{ g})(71.9^{\circ}\text{C})}$$
$$\text{c} = 0.623 \text{ J/g}^{\circ}\text{C}$$

23 Example of an appropriate and complete solution

Group A

CH4 because it has the fewest bonds to break

Group B

 $CH_3OH_{(g)}$ because substances in their gaseous states react faster.

2 HCl: 1 CO₂

At time 0 0.249 mol HCl: 0.125 mol CO₂

Ratio $2 \text{ HCl}: 1 \text{ CO}_2$

At 7 minutes

 $\frac{\Delta \text{mol HCl}: 0.122 \text{ mol CO}_2}{\Delta \text{mol HCl}} = \frac{0.125 - 0.122}{2}$

 Δt

 $=\frac{0.00300 \text{ mol}}{7 \text{ min}}$

7 min

 $= 4.29 \times 10^{-4} \text{ mol/min}$

Example of an appropriate and complete solution

Question A

Curve 1 represents the reaction without a catalyst. Since the volume is not increasing as quickly as in curve 2, the rate of reaction is slower for curve 1.

Question B

Diagram 2 represents the reaction with a catalyst. Since the activation energy is lower in diagram 2, this one represents the reaction with a catalyst.

26

25

Example of an appropriate and complete solution

	2 H ₂	$2 \text{ NO} \leftrightarrow \text{N}_2$	$H_2O_{(\ell)}$ is ignored
Initial	$\frac{4.0}{2.0}$ = 2.0 M	2.0 M	0
Change	$0.40 \times 2 = 0.80 \text{ M}$	$0.40 \times 2 = 0.80 \text{ M}$	0.40 M
Equilibrium	(2.0 – 0.80) M = 1.2 M	(2 – 0.80) M = 1.2 M	$\frac{0.80}{2.0} = 0.40 \text{ M}$

$$K_{c} = \frac{[N_{2}]}{[H_{2}]^{2} [NO]^{2}}$$
$$= \frac{0.40}{(1.2)^{2} (1.2)^{2}}$$
$$= 0.19$$

/4

/4

28

Example of an appropriate and complete solution

Answer: The pH of the solution is **2.38**.

Note: Accept 2.37 and 2.39 also.

Example of an appropriate and complete solution

- A) The **aluminum** electrode is oxidized.
- B) $3 \operatorname{Cu}_{(\mathrm{aq})}^{2+} + 6 e^{-} \rightarrow 3 \operatorname{Cu}_{(\mathrm{s})} \qquad E^{\circ} = +0.34 \ \vee \\ 2 \operatorname{Al}_{(\mathrm{s})} \rightarrow 2 \operatorname{Al}_{(\mathrm{aq})}^{3+} + 6 e^{-} \qquad E^{\circ} = +1.66 \ \vee \\ \hline 3 \operatorname{Cu}_{(\mathrm{aq})}^{2+} + 2 \operatorname{Al}_{(\mathrm{s})} \rightarrow 3 \operatorname{Cu}_{(\mathrm{s})} + 2 \operatorname{Al}_{(\mathrm{aq})}^{3+} \qquad E^{\circ} = +2.00 \ \vee \\ \hline \end{array}$
- C) The standard cell potential is **+2.00 V**.
- D) $Cu^{2+}_{(aq)} + 2 e^{-} \rightarrow Cu_{(s)}$ is the reduction half-cell.

Assign one mark for each correct answer.

/4

A) The complete cell reaction is:

$$\begin{array}{ll} 2 \operatorname{Ag}_{(aq)}^{+} + 2 \ e^{-} \to 2 \operatorname{Ag}_{(s)} & E^{\circ} = +0.80 \ V \\ \\ \hline \operatorname{Cu}_{(s)} \to \operatorname{Cu}_{(aq)}^{2+} + 2 \ e^{-} & E^{\circ} = -0.34 \ V \\ \hline \hline \mathbf{2} \operatorname{Ag}_{(aq)}^{+} + \operatorname{Cu}_{(s)} \to \operatorname{Cu}_{(aq)}^{2+} + 2 \operatorname{Ag}_{(s)} & E^{\circ} = +0.46 \ V \end{array}$$

- B) The net cell voltage is **+0.46 V**.
- C) A method to increase the net cell voltage is to increase the concentration of AgNO₃.
- D) By adding NaCl to the system, the net cell voltage would **decrease** because **the concentration of Ag⁺ would decrease**.

ANSWERS EXAM #4 JUNE 2006

15

Example of an appropriate and complete solution

 $\frac{P_1 \bullet V_1}{T_1} = \frac{P_2 \bullet V_2}{T_2}$ $\frac{101.8 \text{ kPa} \bullet 1.5 \text{ L}}{295 \text{ K}} = \frac{102.3 \text{ kPa} \bullet V_2}{306 \text{ K}}$ $V_2 = 1.55 \text{ L} \qquad \text{OR} \qquad V_2 = 1550 \text{ mL}$

Answer: The balloon that will deflate the fastest is **A**.

Justification: Helium diffuses faster than carbon dioxide because helium has a smaller molar mass. Rate of diffusion increases when temperature increases because the gas molecules move faster.

17

16

Example of an appropriate and complete solution

Mass of NH_3 in the tank 8421 g - 8275 g = 146 g

Number of moles of NH_3 146 g ÷ 17.0 g/mol = 8.59 mol

Number of moles of CO_2 = Number of moles of NH_3 = 8.59 mol

 $\begin{array}{l} \text{Mass of CO}_2\\ \text{8.59 mol} \times 44.0 \text{ g/mol} = 378 \text{ g} \end{array}$

```
Total mass of the cylinder and CO_2
8275 g + 378 g = 8653 g
```

Answer: The total mass of the tank and carbon dioxide is 8653 g.

18

Example of an appropriate and complete solution

Moles of S $\frac{6.40 \text{ g}}{32.0 \text{ g/mol}}$ = 0.200 mol

Moles of H₂S

 $\frac{2 \operatorname{mol} H_2 S}{x \operatorname{mol}} = \frac{3 \operatorname{mol} S}{0.200 \operatorname{mol}}$ mol H₂S = 0.133 mol

T = 294 K

P = 67.5 kPa

 $R = 8.31 \text{ kPa} \cdot \text{L/mol} \cdot \text{K}$

PV = nRT(67.5 kPa)(L) = (0.133 mol)(8.31 kPa•L/mol•K)(294 K) = 4.81 L H₂S

Answer: The volume of the container is 4.81 L.

ΔH	=	$\frac{-mc\Delta T}{\text{mol HCl}}$
m	=	70.0 g
С	=	4.19 J/g°C
ΔT	=	29.8°C – 22.4°C
	=	7.4°C
mol HCI	=	3.00 mol/L imes 0.0200 L
	=	0.0600 mol
ΔH	=	$\frac{-(70.0 \text{ g})(4.19 \text{ J/g}^{\circ}\text{C})(7.4 ^{\circ}\text{C})}{0.0600 \text{ mol}}$

= - 36 000 J/mol or - 36 kJ/mol

Answer: The molar heat of neutralization of HCl_(aq) is - 36 000 J/mol or - 36 kJ/mol.

Mass of water in each cup

20

 $125 \text{ mL} \times 1.00 \text{ g/mL} = 125 \text{ g}$

Heat lost by metal cube = Heat gained by water

Answer:	The metal cube with the largest heat capacity is Cube B .
Cube C	-[(175 g) (c) (37°C – 98°C)] = (125 g) (4.19 J/g°C) (37°C – 21°C) c = 0.79 J/g°C
Cube B	-[(132 g) (c) (35°C – 98°C)] = (125 g) (4.19 J/g°C) (35°C – 21°C) c = 0.88 J/g°C
Cube A	$\begin{aligned} -Q_{\text{(metal)}} &= +Q_{\text{(water)}} \\ -[(115 \text{ g}) \text{ (c) } (32^{\circ}\text{C} - 98^{\circ}\text{C})] &= (125 \text{ g}) (4.19 \text{ J/g}^{\circ}\text{C}) (32^{\circ}\text{C} - 21^{\circ}\text{C}) \\ &\qquad \qquad $

Example of an appropriate and complete solution

Heat absorbed by the water

$$Q = mc\Delta T$$

275 g × 4.19 J/g°C × (94.7 – 16.4)°C = 90 221 J

Molar mass of methanol 12.0 + 4(1.0) + 16.0 = 32.0 g/mol

Mass of methanol burned 642.53 g - 635.68 g = 6.85 g

```
Number of moles of methanol burned
6.85 \text{ g} \div 32.0 \text{ g/mol} = 0.214 \text{ mol}
```

 ΔH

-90 221 J ÷ 0.214 mol = -422 000 J/mol or -422 kJ/mol

Answer: The molar heat of combustion (ΔH) of methanol is -422 000 J/mol or -422 kJ/mol.

22

Examples of an appropriate and complete solution

$$\begin{split} \mathsf{N}_2\mathsf{O}_{5(g)} &\to \mathsf{N}_{2(g)} + \frac{5}{2} \ \mathsf{O}_{2(g)} & \Delta H = -14 \ \mathsf{kJ} \\ \mathsf{N}_{2(g)} + 3 \ \mathsf{O}_{2(g)} + \mathsf{H}_{2(g)} \to 2 \ \mathsf{HNO}_{3(aq)} & \Delta H = -348 \ \mathsf{kJ} \\ \mathsf{H}_2\mathsf{O}_{(l)} \to \mathsf{H}_{2(g)} + \frac{1}{2} \ \mathsf{O}_{2(g)} & \Delta H = +286 \ \mathsf{kJ} \\ \hline \mathsf{N}_2\mathsf{O}_{5(g)} + \mathsf{H}_2\mathsf{O}_{(l)} \to 2 \ \mathsf{HNO}_{3(aq)} & \Delta H = -76 \ \mathsf{kJ} \end{split}$$

Answer: The heat of reaction (ΔH) for this reaction is -76 kJ.

23 Example of an appropriate and complete solution

Rate of reaction

$$\frac{\Delta m}{\Delta t}$$

$$= \frac{1 \text{ mol}}{4 \text{ s}}$$

$$= 0.25 \frac{\text{mol}}{\text{s}} \text{ for Petroleum}$$
Rate of oxygen consumption
$$0.25 \text{ mol/s} \times \frac{25}{2}$$

$$= 3.1 \frac{\text{mol}}{\text{s}}$$

Answer: The average rate of consumption of oxygen gas is 3.1 mol/s.

Example of an appropriate and complete answer

For 0-10 s

moles $Fe_{(s)}$ used = 1.10 mol - 0.75 mol = 0.35 mol

moles CO_(g) present

 $\begin{array}{ll} {\sf Fe}({\sf s}):{\sf Co}_{({\sf g})} & = 3{:}2 \\ {\sf moles}\; {\sf CO}_{({\sf g})} & = 0.35\; {\sf mol}\times \frac{3}{2} \\ & = 0.553\; {\sf mol} \end{array}$

At 10 s, 0.53 moles of $CO_{(g)}$ is present.

Repeat calculations for subsequent intervals.

The following table summarizes the results.

Time (s)	Fe _(s) present (mol)	Fe _(s) used (mol)	CO _(g) present (mol)
0	1.10	0	0
10	0.75	0.35	0.53
20	0.60	0.50	0.75
30	0.50	0.60	0.90
40	0.45	0.65	0.98
50	0.42	0.68	1.02

.

Kinetic Energy

Justification: Decreasing the temperature increases the probability of finding molecules with lower energy levels; hence, the curve shifts to the left.

When a catalyst is added, the reaction follows an alternate pathway that has a lower activation energy. This results in the activation energy (E_a) shifting to the left.

26

25

Example of an appropriate explanation

- 1. Yes No Z Raising the temperature will favour the endothermic reaction, which in this case will favour the reactants, and this is undesirable.
- Yes ☑ No ☑ According to Le Chatelier's principle, increasing the pressure will cause the system to shift in favour of the reaction that has the fewest moles of gas molecules. Since there are two moles of gas molecules on the left side of the equation, and one mole of gas molecules on the right side of the equation, the system will shift to favour the production of ethanol.
- 3. Yes □ No ☑ Adding more catalyst will have no effect on the position of equilibrium. A catalyst only affects the rate at which equilibrium is established.
- 4. Yes 🗹 No 🔾

According to Le Chatelier's principle, adding a reactant causes the equilibrium to shift towards the product, consuming the reactant and producing more ethanol.

27		$NH_{3(g)}$	O _{2(g)}	NO _(g)	$H_2O_{(g)}$
	Initial Concentration (mol/L)	1.5	2.0	0	0
	Change in concentration (mol/L)	-0.80	-1.0	0.80	1.2
	Equilibrium concentration (mol/L)	0.7	1.0	0.80	1.2

K_c =

=

$$\frac{[NO]^{4} [H_{2}O]^{6}}{[NH_{3}]^{4} [O_{2}]^{5}}$$
$$\frac{[0.80]^{4} [1.2]^{6}}{[0.7]^{4} [1.0]^{5}}$$
5.09

Answer: The equilibrium constant, K_c, for this reaction is **5**.

28

 $[H_{3}O^{+}] = 10^{-pH}$ $= 10^{-4.6}$ $= 2.5 \times 10^{-5} \text{ mol/L}$

Since the pH is relatively large, the acid is quite weak and the ionization will not create an appreciable change in the concentration of the hypobromous acid.

Therefore,

 \mathbf{K}_{a}

$$\frac{[H_{3}O^{+}] \times [OBr^{-}]}{[HOBr]} = \frac{(2.5 \times 10^{-5})(2.5 \times 10^{-5})}{(0.085)}$$
$$= 7.4 \times 10^{-9}$$

Answer: The acid ionization constant, K_a , for this acid is **7.4** × **10**⁻⁹.

29 Example of an appropriate and complete answer

a) The *E*° : 1.56 V

- b) From Zinc to Silver
- c) 2 Ag⁺_(aq) + Zn_(s) \rightarrow 2 Ag_(s) + Zn²⁺_(aq)
- d) Zinc is the anode.

ANSWERS EXAM #5 JUNE 2005

15 Example of an appropriate and complete solution

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

$$\frac{P_1 (2 L)}{n (293 K)} = \frac{P_2 (0.5 L)}{0.5 n (253 K)}$$

$$\frac{P_1 (2 L)}{n (293 K)} = \frac{P_2 (0.5 L)}{0.5 n (253 K)}$$

$$\frac{2 L}{n (293 K)} \times \frac{253 K (0.5 n)}{(0.5 L)} P_1 = P_2$$

1.73 $P_1 = P_2$

Answer: The ratio is 1.73 : 1.

16Step 1:Find mass of nitroglycerine.
$$d = \frac{1.59 \text{ g}}{\text{mL}}$$
 $\frac{1.59 \text{ g}}{100 \text{ mL}}$ $\frac{1.59 \text{ g}}{\text{mL}} = \frac{\text{mass}}{100 \text{ mL}}$ 159 g of nitroglycerine present in 100 mL.Step 2:Find moles of H₂O gasM for nitro glycerine = $\frac{227 \text{ g}}{\text{mol}}$ $\frac{159 \text{ g}}{227 \text{ g}} = 0.70 \text{ mol of nitro glycerine}$ $\frac{4 \text{ mol C}_3 \text{H}_5(\text{ONO}_2)_{3(0)}}{0.70 \text{ mol C}_3 \text{H}_5(\text{ONO}_2)_{3(0)}} = \frac{10 \text{ mol H}_2 \text{O}_{(g)}}{x \text{ mol H}_2 \text{O}_{(g)}}$ $x = 1.75 \text{ mol H}_2 \text{O}_{(g)}$ Step 3:Find volume H₂O_(g)Use either:
A. Ideal gas Law, $PV = nRT$
or
B. Avogadro, at STP 1 mol gas = 22.4 L

Mass of unknown gas

17

47.61 g - 46.02 g = 0.69 g

$$PV = nRT$$

$$n = \frac{PV}{RT}$$

$$= \frac{46.9 \text{ kPa} \times 0.296 \text{ L}}{8.31 \frac{\text{kPa L}}{\text{mol K}} \times (18 + 273)}$$

$$= 0.00574 \text{ mols unknown gas}$$

Molar mass of unknown gas

 $\frac{0.69 \text{ g}}{0.00574 \text{ mols}}$ = 120.2 g/mol

Therefore, the unknown gas is CF_2CI_2

Answer: The unknown gas is most likely CF_2CI_2 because its molar mass is 121 g/mol.

- a) Temperature **has a direct effect on the average kinetic energy** of a molecule. Colder temperatures imply that the **molecules will move at a slower rate**. Since the molecules are moving at a slower rate they will diffuse (spread out) at a slower pace.
 - b) The molecular mass of helium is less than the molar mass of oxygen. Because both gases have the same kinetic energy, the velocity of the helium molecules must be greater than the velocity of the helium molecules must be greater than the velocity of the helium will diffuse more rapidly.

$$\Delta T_{\text{water}} = 26 \,^{\circ}\text{C} - 14 \,^{\circ}\text{C} = 12 \,^{\circ}\text{C}$$
$$\Delta T_{x} = 95 \,^{\circ}\text{C} - 26 \,^{\circ}\text{C} = 69 \,^{\circ}\text{C}$$
$$M_{w}C_{w} \,\Delta T_{w} = M_{x}C_{x} \,\Delta T_{x}$$
$$C_{x} = \frac{M_{w}C_{w} \,\Delta T_{w}}{M_{x} \,\Delta T_{x}}$$
$$= \frac{(65 \,\text{g})(12 \,^{\circ}\text{C})(4.19 \,\text{J/g}^{\circ}\text{C})}{(150 \,\text{g})(69 \,^{\circ}\text{C})}$$
$$= 0.32 \,\text{J/g} \,^{\circ}\text{C}$$

20 1. Moles of NaOH_(aq) used

$$M = \frac{n}{V}$$
 or $n = MV$
(1.0 mol/L)(50.0 mL/1000mL) = 0.050 moles

- Heat absorbed Q = mc∆T (70.0 g)(4.19 J/(g°C)(29.8-22.3 °C) = 2200 J
- 3. Since Q for the surroundings is positive, Q for the system must be negative (or -2200 J)
- 4. Molar heat of neutralization

$$\Delta H = \frac{Q}{n}$$

$$\frac{-2200 \text{ J}}{0.050 \text{ moles}} \text{ NaOH}$$

$$-44000 \text{ J or } -44 \text{ kJ/mol NaOH}$$

Answer: ΔH is -44 kJ/mol NaOH.

22

Moles of diamond used 1.00 g = 8.33×10^{-2} mol C 12.01 g/mol $Q = mc_{water} \Delta T$ = (150.0 g)(4.19 J/(g°C)(74.5 - 22.0 °C) $= 3.30 \times 10^4 \text{ J}$ Q for diamonds is -3.30 \times 10^4 J or -3.30 \times 101 kJ Molar Heat of Combustion $(-3.30 \times 10^1 \text{ kJ})$ $\frac{Q}{n}$ $(8.33 \times 10^{-2} \text{ moles})$ -396 kJ/mol = Answer: **△***H* is -396 kJ/mol or -396 000 J/mol. N + 3 H1118 kJ Enthalpy or E_p $\frac{1}{2}\,N_2\ +\ \frac{3}{2}\,H_2$ (kJ/mol) 0.0 ΔH NH₃ -46

Reaction coordinate

Criteria:

- 1. *y* axis is labelled correctly, including units and values.
- 2. Correct ΔH .
- 3. Activation energy values are correctly indicated.
- 4. Reactants, activated complex, and products are correctly labelled.

Rate of N₂ consumption $(0.60 - 4.00) \text{ mol/L} = -0.068 \text{ or } -6.8 \times 10^{-2} \text{ mol/L/min}$

50 min

Rate of NH₃ production $\frac{-6.8 \times 10^{-2} \text{ mol/L}}{\text{min}} \times \frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} = 1.4 \times 10^{-1} \text{ mol/L/min}$

The average rate of ammonia production is $1.4 \times 10^{-1} \text{ mol/L/min.}$ Answer:

NO (I) 24

23

(II) OH-

OH⁻ and NO (III)

25 Example of an appropriate and complete solution

a) Data Table

Time (min)	[I ⁻] (mol/L)	[l ₂] (mol/L)
0.0	0.0800	0
0.2	0.0400	0.02
0.4	0.0200	0.03
0.6	0.0100	0.035
0.8	0.0050	0.0375
1.0	0.0025	0.0387

Calculate the rate b)

Rate =
$$\frac{(0.03875 - 0) \text{ mol/L}}{1.0 - 0.0 \text{ min}}$$

= $\frac{0.03875 \text{ mol/L}}{1.0 \text{ min}}$
= 0.03875 mol/L/min
= 3.88×10^{-2}
= $3.9 \times 10^{-2} \text{ mol/L/min}$

Answer: The average rate of reaction for the production of $I_{2(aq)}$ is **3.9** × **10⁻² mol/L/min**.

Example of an appropriate and complete answer

$$\begin{array}{rcl} & 4 \ \text{NH}_{3(g)} & + & 3 \ \text{O}_{2(g)} & \leftrightarrow & 2 \ \text{N}_{2(g)} & + 6 \ \text{H}_2\text{O}_{(g)} \\ & 0.0150 & 0 & 0 \\ \text{C} & \underline{-3.92 \times 10^{-3}} & \underline{-2.94 \times 10^{-3}} & \underline{+1.96 \times 10^{-3}} & \underline{+5.88 \times 10^{-3}} \\ \text{E} & 1.11 \times 10^{-2} & 1.21 \times 10^{-2} & \underline{+1.96 \times 10^{-3}} & \underline{+5.88 \times 10^{-3}} \\ \text{K}_c & = \frac{\left[\text{N}_2\right]^2 \left[\text{H}_2\text{O}\right]^6}{\left[\text{NH}_3\right]^4 \left[\text{O}_2\right]^3} \\ & = \frac{\left[1.96 \times 10^{-3} \ \text{mol/L}\right]^2 \left[5.88 \times 10^{-3} \ \text{mol/L}\right]^6}{\left[1.11 \times 10^{-2} \ \text{mol/L}_3\right]^4 \left[1.21 \times 10^{-2} \ \text{mol/L}\right]^3} \\ & = 6.01 \times 10^{-6} \end{array}$$

Answer: The
$$K_c$$
 for the reaction at this temperature is **6.01** × **10**⁻⁶.

27 Example of an appropriate and complete solution

Butanoic Acid

$$HA \quad \leftrightarrow \quad H^{+} \quad + A^{-}$$

$$I = 0.15 \qquad 0 \qquad 0$$

$$C = -1.51 \times 10^{-3} \qquad 1.51 \times 10^{-3} + 1.51 \times 10^{-3}$$

$$E = 0.148 \qquad 1.51 \times 10^{-3} + 1.51 \times 10^{-3}$$

$$K_{a} = \frac{\left[1.51 \times 10^{-3} \text{ mol/L}\right]^{2}}{0.148 \text{ mol/L}}$$

$$= 1.54 \times 10^{-5}$$
Hydrofluoric Acid
First find [H⁺]

$$\frac{K_{W}}{7.59 \times 10^{-10}} = 1.32 \times 10^{-5}$$

$$I = 0.035 \qquad 0 \qquad 0$$

$$C = -1.32 \times 10^{-5} \qquad 1.32 \times 10^{-5} + 1.32 \times 10^{-5}$$

$$K_{a} = \frac{\left[1.32 \times 10^{-5} \text{ mol/L}\right]^{2}}{0.0350 \qquad \text{mol/L}}$$

$$= 4.98 \times 10^{-9}$$

Answer:Butanoic acid is the stronger of the two.Note:Comparing percent ionization is an acceptable justification.

a)

- b) E°_{cell} : 2.37 V + 0.80 V = 3.17 V
- c) To increase the cell potential, the concentration of AgNO₃ should be increased or the concentration of Mg(NO₃)₂ should be decreased.

29 Example of an appropriate and complete answer

1.
$$Fe^{2+} + 2e^- \rightarrow Fe$$
 $-0.44 V$ Maintains integrity of pipes(1 mark) $Cu \rightarrow Cu^{2+} + 2e^- \rightarrow Pb$ $-0.78 V$ Maintains integrity of pipes(1 mark)2. $Pb^{2+} + 2e^- \rightarrow Pb$ $-0.13 V$ Maintains integrity of pipes(1 mark) $Cu \rightarrow Cu^{2+} + 2e^- \rightarrow 0.34 V$ $-0.47 V$ Maintains integrity of pipes3. $2 Ag^+ + 2e^- \rightarrow 2 Ag$ $+0.80 V$ Copper pipe corrodes $U \rightarrow Cu^{2+} + 2e^- \rightarrow 0.34 V$ $+0.46 V$ Copper pipe corrodes

Answer: The technician did cause chemical reaction to occur in the pipes because silver nitrate corrodes copper pipes.

44

ANSWERS EXAM #6 JUNE 2004

Part B

15

Example of an appropriate and complete solution

1.
$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$$
 \therefore $T_2 = \frac{P_2V_2n_1T_1}{P_1V_1n_2}$

2. Set P_1 , V_1 , n_1 and $T_1 = 1$

$$T_{2} = \frac{(2P_{1})(\frac{1}{2}V_{1})(n_{1})(T_{1})}{(P_{1})(V_{1})(3n_{1})} = \frac{1}{3}T_{1}$$

Answer: The temperature must change by a factor of $\frac{1}{3}$.

Example of an appropriate and complete solution

PV = nRT P = 407 inches H₂O V = 22.4 L n = 1 mol R = xT = 273 K

(407 inches H₂O) (22.4 L) = (1.00 mol) (x) (273 K)

$$x = \frac{33.4 \text{ inches } H_2 O \bullet L}{\text{mol} \bullet K}$$

Answer: The ideal gas constant is $\frac{33.4 \text{ inches H}_2 O \bullet L}{\text{mol} \bullet K}$.

17

Example of an appropriate and complete solution

Mass of $O_2 =$ 79.078 g - 76.411 g = **2.667 g** of O_2

Mass of other gas = 97.578 g - 76.411 g = 21.167 g of other gas Since these masses represent equal volume and therefore equal moles of gases:

 $\frac{\text{molar mass of O}_2}{\text{molar mass of unknown gas}} = \frac{32 \text{ g}}{x} = \frac{2.667 \text{ g}}{21.167 \text{ g}}$

x = molar mass of unknown gas = 254 g

Since the molar mass of S_2F_{10} is 254 g, the unknown gas is S_2F_{10} .

Answer: The unknown gas is S_2F_{10} .

18

1. PV = nRT

Example of an appropriate and complete solution

 $(101.3)(3.00 \times 10^3) = n(8.31)(298)$ 123 = n

2.
$$\frac{1(C_{17}H_{33}COO)_{3}C_{3}H_{5}}{x} = \frac{3H_{2}}{123}$$

x = 41.0 mols

3.
$$n = \frac{m}{mm}$$
 mm = 884 g/mol
41.0 = $\frac{m}{884}$
m = 36 200 g or 36.2 kg

Answer: The mass of hydrogenated Olein is 36 200 g or 36.2 kg.

Example of an appropriate and complete solution

 $Q_{\text{oil}} = -Q_{\text{water}}$

 $m_{\text{oil}} \times c_{\text{oil}} \times \Delta T_{\text{oil}} = m_{\text{water}} \times c_{\text{water}} \times \Delta T_{\text{water}}$

 $20.0 \text{ g} \times \textbf{\textit{c}}_{\text{oil}} \times 20.5^{\circ}\text{C} = 100 \text{ mL} \times 4.19 \text{ J/g}^{\circ}\text{C} \times 2.40^{\circ}\text{C}$

 $c_{\text{oil}} = 2.45 \text{ J/g}^{\circ}\text{C}$

The unknown liquid is glycerine. Answer:

20

Example of an appropriate and complete solution Mass

 $120.0 \text{ mL} \times 1.0 \text{ g/mL} = 120.0 \text{ g}$

Specific heat

4.19 J/g°C

$$\Delta q = m \times c \times \Delta T$$

= (120)(4.19)(2.2)
= 1100 J
= -1100 J (or -1.1 kJ)
0.02 L HCI × 1.0 $\frac{\text{mol}}{\text{L}}$ HCI = 0.02 moles HCI

$$\Delta H = \frac{\Delta q}{n}$$
$$= \frac{-1.1 \text{ kJ}}{0.02 \text{ mols}}$$
$$= -55 \text{ kJ/mol}$$

Answer: The ΔH for the reaction is **-55 kJ/mol**.

Example of an appropriate and complete solution

 $Q = mc\Delta T \text{ for the oil}$ $0.92 \frac{g}{em^3} \times 500.0 \text{ mL} = 460 \text{ g}$ $Q = 460 \text{ g} \times 2.01 \frac{J}{g^\circ \text{C}} \times (300.0^\circ \text{C} - 25.0^\circ \text{C})$ $= 250\ 000 \text{ J or } 2.5 \times 10^2 \text{ kJ of heat energy to increase the temperature of the oil}$ $\frac{1\ \text{mol ethanol}}{-278\ \text{kJ}} \times 2.5 \times 10^2 \text{ kJ} \times \frac{46.0 \text{ g}}{1\ \text{mol ethanol}}$

= 42 g ethanol required

Answer: 42 g of ethanol was burned to heat the oil.

22 Examples of an appropriate and complete solution

Approach #1

$$\begin{array}{ll} S_{\beta} \ + \ Q_{2(g)} \rightarrow \ SQ_{2(g)} & \Delta H = -299 \ \text{kJ} \\ \underline{SQ}_{2(g)} \ \rightarrow \ S_{\sigma} + Q_{2(g)} & \Delta H = +294 \ \text{kJ} \\ \hline S_{\beta} \ \rightarrow \ S_{\sigma} & \Delta H = -5 \ \text{kJ} \end{array}$$

Because the net reaction above is exothermic, the energy released must have been stored as potential energy in S_{β} . Therefore S_{β} has 5 kJ more enthalpy than S_{σ} .

Approach #2

$$\begin{array}{ll} S_{\sigma} \ + \ Q_{2(g)} \rightarrow \ SQ_{2(g)} & \Delta H = -294 \text{ kJ} \\ \underline{SQ}_{2(g)} \ \rightarrow \ S_{\beta} + Q_{2(g)} & \Delta H = +299 \text{ kJ} \\ S_{\sigma} \ \rightarrow \ S_{\beta} & \Delta H = +5 \text{ kJ} \end{array}$$

Because the net reaction above is endothermic, the energy absorbed is being stored in the product (S_{β}) as a potential energy. Therefore S_{β} has 5 kJ more enthalpy than S_{σ} .

Approach #3

Burning S_{β} produces 5 kJ more energy than burning S_{σ} . Since the burning reactions are identical except for the sulphur, the "extra" 5 kJ in the second reaction must have been stored in the S_{β} . Therefore the S_{β} has 5 kJ more energy than the S_{σ} .

Answer: S_{β} has the higher enthalpy.

24

Example of an appropriate and complete answer

1. At 20 s, $[AlCl_3] = 0.28 \text{ mol}$ At 10 s, $[AlCl_3] = 0.37 \text{ mol}$ (moles AlCl₃ ±0.02 mol)

 $0.37 \text{ mol} - 0.28 \text{ mol} = 0.09 \text{ mol} \text{ AlCl}_3$

2. 0.09 mol AlCl₃ × $\frac{3 \operatorname{mol} \operatorname{Cl}_2}{2 \operatorname{mol} \operatorname{AlCl}_3}$ = 0.14 mol Cl₂

3.
$$\frac{0.14 \text{ mol } \text{Cl}_2}{20 \text{ s} - 10 \text{ s}} = 0.014 \frac{\text{mol}}{\text{s}} \text{Cl}_{2(g)}$$

Answer: The average rate of formation of $Cl_{2(g)}$ between 10 s and 20 s was 0.014 $\frac{mol}{s}$.

The surface area of the flour has been greatly increased and is mixing with the oxygen in the air.

By increasing the surface area, more effective collisions will occur between the flour and the oxygen, thereby increasing the rate of the reaction.

In the second experiment, the marble slab is sliced into two parts. As a consequence, the surface area of the marble will be doubled and the rate will double.

Since this is experimental data, some variation (± 1 sec) in the data and in the answers must be allowed. The final time must be close to 23 sec ($\approx \frac{45}{2}$).

Answer:

Volume of gas	5 mL	10 mL	15 mL	20 mL	25 mL	30 mL
Elapsed time	4 s	8 s	11 s	15 s	19 s	22 s

The surface area of the four edges of the slab is not doubled when the slab is cut but this will be a very minor factor given that the slab of marble is said to be "very thin".

Calculate the rate:

Average rate =
$$\frac{30 \text{ mL of CO}_2}{22 \text{ s}}$$

= $\frac{1.4 \text{ mL of CO}_2}{\text{s}}$

S Part E Example of an appropriate and complete answer 26 + O_{2(g)} R $SO_{2(g)}$ ≻ $S_{(s)}$ L 0.5 mol 10 L С - X + X Е 0.05 - xХ $\left[\mathbf{O}_{2} \right]$ K_{eq} = $2.4 imes 10^{-2}$ = $2.4 imes 10^{-2}$ - = $\frac{1}{0.05 \frac{\text{mol}}{\text{L}} - x} =$ = $1.2 \times 10^{-3} - 2.4 \times 10^{-2} x$ = 1.2×10^{-3} х х $[O_2] = 0.0012 \text{ mol/L}$ $[SO_2] = 0.049 \text{ mol/L}$ If student states that the change in concentration is negligible, we calculate by: $[SO_2] = \frac{0.5 \text{ mol}}{10 \text{ L}} = 0.05 \text{ mol/L}$ $K_{eq} = \frac{[O_2]}{[SO_2]} = 2.4 \times 10^{-2}$ $\frac{[O_2]^2}{0.05 \frac{mol}{r}} = 2.4 \times 10^{-2}$ O₂ at equilibrium 1.2×10^{-3} mol/L = R SO_{2(g)} + O_{2(g)} S_(s) L 0.05 mol/L С -0.0012 mol/L + 0.0012 mol/L Е 0.0012 mol/L 0.045 mol/L $[O_2] = 0.0012 \text{ mol/L}$ $[SO_2] = 0.049 \text{ mol/L}$

Answer: The average rate of reaction in the second experiment is $\frac{1.4 \text{ mL of CO}_2}{1.4 \text{ mL of CO}_2}$

Answer: The equilibrium concentration of SO₂ is 0.049 mol/L and of O₂ is 0.0012 mol/L. **Note:** If student states *x* is negligible, accept procedure as correct.

Example of an appropriate and complete solution

Approach #1

Find the pH of good quality vinegar

Molarity of Acetic Acid

$$\frac{60 \text{ g CH}_3\text{COOH}}{1 \text{ litre of solution}} = 1.0 \text{ M CH}_3\text{COOH solution}$$
$$\frac{\left[\text{H}^+\right]\left[\text{CH}_3\text{COO}^-\right]}{\left[\text{CH}_3\text{COOH}\right]} = \frac{x \bullet x}{1.0 \text{ M}}$$
$$x^2 = 1.8 \times 10^{-5}$$
$$x = 4.24 \times 10^{-3} \text{ M}$$
$$\text{pH} = 2.37 = 2.4$$

This pH matches that of the sample, therefore this vinegar is good.

Approach #2

Find the " K_a " of the acid in the sample assuming the solution is 1.0 M CH₃COOH.

Since the pH is 2.4, the $[H^+] = 4.24 \times 10^{-3} \text{ M}$

$$\mathcal{K}_{a} = \frac{\left[H^{+}\right]\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]}$$
$$= \frac{\left(4.24 \times 10^{-3} \text{ M}\right)^{2}}{1.0 \text{ M}}$$
$$= 1.8 \times 10^{-5}$$

This K_a matches that of acetic acid so clearly the solution of the sample was 1.0 M in CH₃COOH (i.e. Good quality).

Answer: The vinegar has not been watered down.

								1	4
	+0.80 V			2 Ag _(s)	\rightarrow	2 e-	2 Ag+ +	1.	
	+2.37 V	<u>2</u> e-	+	Mg ²⁺	\rightarrow		Mg _(s)		
		Mg ²⁺	+	2 Ag _(s)	\rightarrow	Mg _(s)	2 Ag+ +		
2 marks		C C		•••		•••	C C		
						/	<i>F</i> ° = 3.17 V	2	
1 mark							_ •		
THAIR					agont	oducina (Maria tha r	2	
4					igent.	educing	wig is the re	э.	
1 mark									

28 Example of an appropriate and complete answer

1. $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$

29

Note: Accept \leftrightarrow in the equation also.

Example of an appropriate and complete answer

2. Adding Zn ions to the system causes a stress on the system. The higher the concentration of zinc ions the more the system will shift to rid this stress by shifting to the reactants. The result is an increase in copper ions. The highest concentration (1.5 M) of Zn(NO₃)₂ will be the most favourable to increase the rate of the reverse reaction.

ANSWERS EXAM #7 JUNE 2003

Part B

19

Example of an appropriate and complete answer

Molar mass of HgO = 216.6 g/mol

mass HgO Mol HgO molar mass HgO = 0.25 mol HgO

54.0 g 216.6 g/mol

From the balanced equation: Therefore

2 mol HgO produces 1 mol O₂ 0.25 mol HgO will produce 0.125 mol O₂

Solution A

PV = nRT*P* = 101.3 kPa V = x L*n* = 0.125 mol $R = 8.31 \frac{\text{kPa L}}{---}$ mol K T = 273 K(101.3 kPa) (x L) = (0.125 mol) (8.31 $\frac{\text{kPa L}}{\text{mol K}}$) (273 K) $V = 2.80 L O_2$

OR

Solution B

1 mol of a gas at STP occupies a volume of 22.4 L, therefore: 1 mol = 22.4 L $0.125 \text{ mol } O_2 = x L$ $V = 2.80 L O_2$

The volume of oxygen required is 2.80 L. Answer:

20 1. Determine the molar mass of CCl₄

1 mol C + 4 mol Cl (12.01 g/mol) + (4 mol × 35.45 g/mol) **153.81 g/mol**

2. Find the volume of 1 mole of the sample under these conditions $125^{\circ}C = 125^{\circ}C + 273$ = 398 K

> *PV* = *nRT* (95.2 kPa) (V) = (1 mol) (8.31 kPa L/mol K) (398 K) *V* = **34.7** L

3. Find density

Δ = m/v = 153.81 g/34.7 L Δ = 4.43 g/L

Answer: The density of the sample of CCl₄ is **4.43 g/L**.

1. Mass of unknown gas 6.00 g - 4.40 g = 1.60 g

2.

21

 $\begin{array}{rcl}
P & \bullet & V & = & n \bullet & R & \bullet & T \\
102 \text{ kPa} & \bullet & 1.21 \text{ L} & = & n \bullet 8.31 \text{ kPa L/mol K} & \bullet & 273 + 18^{\circ}\text{C} \\
0.051 & = & n
\end{array}$

3. $n = \frac{m}{mm}$

$$0.051 \text{ mol} = \frac{1.60 \text{ g}}{\text{mm}}$$

 $31.4 \frac{\text{g}}{\text{mm}} = \text{mm}$

4. Molar mass of $O_2 = 32$ g/mol

Answer: **The unknown gas is** O₂.

Example of an appropriate and complete answer

Heat lost by the metal = Heat gained by the water $Q_1 = mc\Delta T$ $= (52.8 \text{ g})(c)(26.0^{\circ}\text{C} - 100.0^{\circ}\text{C})$ $Q_1 = -1770 \text{ J}$ $c = 0.453 \text{ J/g}^{\circ}\text{C}$ = Heat gained by the water $Q_2 = mc\Delta T$ $= (90.0 \text{ g})(4.19 \text{ J/g}^{\circ}\text{C})(26.0^{\circ}\text{C} - 21.3^{\circ}\text{C})$ $Q_2 = +1770 \text{ J}$ $Q_2 = mc\Delta T$ $= (90.0 \text{ g})(4.19 \text{ J/g}^{\circ}\text{C})(26.0^{\circ}\text{C} - 21.3^{\circ}\text{C})$

Answer: The unknown metal is Iron.

23

22

 $Q = mc\Delta T$ m = 100 g $c = 4.19 \text{ J/g}^{\circ}\text{C}$ $\Delta T = 6.7^{\circ}\text{C}$ Q = 2.81 kJmol NaOH = 1.0 mol/1000 mL = 0.05 mol in 50 mL $\Delta H = -Q/n$ $\Delta H = \frac{-2.81 \text{ kJ}}{0.05 \text{ mol NaOH}}$ $\Delta H = -56.1 \text{ kJ/mol}$

24

1. 1 mol of water has a mass of 18.0 g

2. Heating 1 mol of water from 25.0°C to 100.0°C

$$Q = mc\Delta T$$

= (18.0 g)(4.19 J/g°C)(100.0°C - 25.0°C)
= 5660 J or 5.66 kJ

3. Evaporation of the water

$H_2O_{(I)} \rightarrow H_{2(g)} + 1/2 O_{2(g)}$	ΔH = +285.9 kJ/mol
$H_{2(g)}$ + 1/2 $O_{2(g)} \rightarrow H_2O_{(g)}$	∆ <i>H</i> = -241.8 kJ/mol
$H_2O_{(I)} \rightarrow H_2O_{(g)}$	$\Delta H = +44.1 \text{ kJ/mol}$

4. Total heat required **Q**_{total} = 5.66 kJ + 44.1 kJ = 49.8 kJ

Answer: The total amount of heat required to evaporate the water is 49.8 kJ.

1. Amount of H_2O_2 consumed after 60 s 0.925 mol/L × (2 mol $H_2O_2/1$ mol O_2) = 0.185 mol/L

25

- 2. Amount of H_2O_2 consumed after 300 s 0.292 mol $O_2 \times$ (2 mol H_2O_2 /1mol O_2) = 0.584 mol/L
- 3. Average rate of H_2O_2 consumed from 60 s to 300 s $\,$

Average rate = $\frac{(0.584 - 0.185) \text{ mol/L}}{(300 - 60) \text{ s}}$ = 0.00166 mol/L/s or 1.66 × 10⁻³ mol/L/s

Answer: The rate of decomposition is 1.66×10^{-3} mol/L/s.

26 Example of an appropriate and complete answer

Average Rate of formation of B₂

Time (seconds)	Concentration of BC (mol/L)	Concentration of B ₂ (mol/L)	Rate of B ₂ (mol/L/s)
0	4.0	0	0
5	3.0	0.50	0.10
10	2.3	0.85	0.09
15	1.7	1.15	0.08
20	1.4	1.30	0.07
25	1.2	1.40	0.06
30	1.1	1.45	0.05

Example of an appropriate and complete answer

CO: 4 moles per 4 L = 1 mol/L H₂: 9 moles per 4 L = 2.25 mol/L CH₃OH: 2 moles per 4 L = 0.5 mol/L

2.

1.

	CO _(g) +	$2 H_{2(g)} \rightarrow$	CH ₃ OH _(g)
I	1.0 mol/L	2.25 mol/L	0
С	-0.5	-1.0	+0.5 mol/L
Е	0.5	1.25	0.5

3.

$$K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}$$
$$= \frac{(0.5)}{(0.5)(1.25)^{2}}$$
$$= 0.64$$

Answer:

The equilibrium constant is **0.64**.

28

Example of an appropriate and complete answer

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]}$$

$$\left[CH_{3}COOH\right] = 0.50 \text{ mol in } 2.00 \text{ L}$$

$$= 0.25 \text{ mol/L}$$

$$\left[CH_{3}COOH\right] = \left[H^{+}\right] = x$$

$$1.8 \times 10^{-5} = \frac{x^{2}}{0.25 \text{ mol/L}}$$

$$x = 2.1 \times 10^{-3} = \left[H^{+}\right]$$

$$\log \text{ of } 2.1 \times 10^{-3} = 2.7$$

Answer: The pH of the solution is **2.7**.

-

29

Example of an appropriate and complete answer

A. $3 \operatorname{Ni}^{2+}$ + $2 \operatorname{Al}_{(s)} \rightarrow 3 \operatorname{Ni}_{(s)}$ + $2 \operatorname{Al}^{3+}$ B. $1.40 \operatorname{V}$ C. $\operatorname{Ni}^{2+}_{(aq)}$

D. From AI to Ni