Factors Affecting the Rate of a Chemical Reaction

Purpose:

To investigate the factors affecting reaction rate.

Part A: The influence of the nature of the reactants

Materials:

Candle

Balance

Alcohol burner

Stopwatch

Procedure:

System 1

Combustion of paraffin (wax candle C₂₂H₅₂)

- 1. Place the candle with the support on the scale, and record its mass.
- 2. Light candle and immediately start the timer.
- 3. While the candle burns, record the mass every minute, up to 5 minutes

Observations:

Table #1

SYSTEM 1 (Parrafin)

Time (min)	Mass of system (g)
0	
1	
2	
3	
4	
5	

Procedure:

System 2 Combustion of alcohol (methyl alcohol CH₃OH)

- 1. Place an alcohol burner on a balance and weigh it, record data.
- 2. Light burner and start timer.
- 3. While the alcohol burns, record mass every minutes up to 5 minutes.

Observation:

Table #2

SYSTEM 2 (Alcohol)

Time (min)	Mass of system (g)
0	
1	
2	
3	
4	
5	

Conclusion on the influence of the reactants

Part B: The influence of surface area

Materials:

2 test tubes

Stopwatch

Test tube rack

Calcium carbonate powder

Hydrochloric acid

Calcium carbonate chips

(3 mol/L)

Procedure:

1- Put a piece of Calcium carbonate in the first test-tube.

2- To the second test tube add some Calcium carbonate powder

3- Put 5 mL of hydrochloric acid the first test tube, and record the time it takes for the Calcium carbonate to disappear.

4- Do the same for the Calcium carbonate powder, record the time

Observation:

Table #3

Reactant	Time (s)
Calcium carbonate chips	12
Calcium carbonate powder	

Conclusion on the influence of surface area:

Part C: The influence of concentration

The chemical reaction used to demonstrate the affect of concentration on the rate of reaction is:

 $Na_2S_2O_{3\,(aq)} + 2HCl_{(aq)} \rightarrow S_{(s)} + SO_{2(aq)} + 2NaCl_{(aq)} + H_2O_{(l)}$ Acidification of thiosulfate to produce sulfur (seen as a white cloud in the solution)

Materials:

100 mL beaker

100 mL graduated cylinder Sodium thiosulfate

Stopwatch

10 mL graduated cylinder Hydrochloric acid

Procedure:

1 1- Pour 50 mL of 0.050 mol/L Na₂S₂O₃ (sodium thiosulfate) in a 100 mL

2 Beaker.

3 2- Add 5.0 mL of 1.00 mol/L HCl and immediately start the timer.

3- Stop the timer as soon as you see the formation of a white cloud.

- 4- In the spaces provided record the reaction times for the formation of the white cloud.
- 5- Repeat steps 2 to 5 above for the other two cases.

Observations: Table #4

Reactions	Time (s)
50 mL of 0.050 mol/L Na ₂ S ₂ O ₃ + 5.0 mL of 1.00 mol/L HCl	
50 mL of 0.075 mol/L Na ₂ S ₂ O ₃ + 5.0 mL of 1.00 mol/L HCl	
50 mL of 0.100 mol/L Na ₂ S ₂ O ₃ + 5.0 mL of 1.00 mol/L HCl	·

Conclusion for the influence of concentration of reactants:

Part D: The influence of temperature

The influence of temperature on reaction rates uses the following aqueous reaction:

2MnO₄ + 3H₂SO₄ + 5H₂C₂O₄ → 2MnSO₄ + K₂SO₄ + 10CO₂ + 8H₂O reduction of colored permangate ions to colorless ions in acid solution

Materials:

Hot plate

2 (100mL) beakers

Beaker tongues

2 Thermometers

100 mL graduated cylinder

10 mL graduated cylinder

Solution A:

 $H_2C_2O_4$ 0.05 mol/L and H_2SO_4 0.3 mol/L

Solution B:

KmnO₄ 0.02 mol/L

Procedure:

Part 1: Reaction at room temperature

- 1 Pour 20 mL of solution A containing oxalic acid into a 100 mL beaker.
- Pour 10 mL of solution B containing potassium permanganate into a 100 mL beaker.
- 3 Record the room temperature.
- 4 Mix solution A with solution B and immediately start the timer. Be sure to stop the timer as soon as the mixture becomes colorless. Record the reaction time below.

NOTE: The solution will first turn brown before becoming colorless. A white paper placed under the beaker make it easier to observe the reaction.

Part 2: Reaction at higher temperature

- 1 Pour 20 mL of solution A into a 100 mL beaker.
- 2 Pour 10 mL of solution B into the other 100 mL beaker.
- 3 Place both beakers on a hot plate and bring the solution to a boil.
- 4 Mix solution A with solution B and immediately start the timer. Again record the reaction time.

Observation:

Table #5

Reaction	Time (s)
Part 1: Room temperature	
Part 2: High temperature	

Conclusion for the influence of temperature on the rate of a reaction: