$$
6,7,8 \rightarrow \text { Questions for Partial pressares and Solutions. }
$$

\#6 Example 1 While kept at a constant temperature, a gas mixture contains the following:

gas	
0.340	H_{2}
5.55	He
2.10	Ar

The manometer attached to the container containing the mixture reads 233 kPa . Find the partial pressure of each gas.

$$
\begin{gathered}
P_{A}=\frac{n_{A}}{n_{T}} p_{T} \\
P_{H 2}=\frac{n_{H 2}}{n_{T}} P_{T} \\
P_{H 2}=\left[\frac{0.34}{0.34+5.55+2.10}\right] 233 \mathrm{kPa} \\
=9.9 \mathrm{kPa}
\end{gathered}
$$

Repeat for other gases; $\mathrm{P}_{\mathrm{He}}=162 \mathrm{kPa} ; \mathrm{P}_{\mathrm{Ar}}=61 \mathrm{kPa}$

Example 2 Since equal volumes of ideal gases contain the same number of moles under the same conditions of P and $\mathrm{T}, \%$ volumes of gases are directly proportional to mole fractions.

With this in mind, find the partial pressure of oxygen in air at STP.
Air is $21 \% \mathrm{O}_{2}$ by volume.
$\mathrm{n}_{02}=0.21$
$P_{T}=101.3 \mathrm{kPa}$ at STP

$$
\begin{gathered}
P_{A}=\frac{n_{A}}{n_{T}} P_{T} \\
P_{O 2}=\frac{n_{O 2}}{n_{T}} P_{T}=\frac{0.21}{1} 101.3=21 \mathrm{kPa}
\end{gathered}
$$

Exercises

1. A balloon contains 0.100 moles of oxygen and 0.400 moles of nitrogen. If the balloon is at standard temperature and pressure, what is the partial pressure of the nitrogen?

$$
P_{N 2}=\frac{n_{N 2}}{n_{T}} P_{T}=\frac{0.400}{0.100+0.400} 101.3=81.0 \mathrm{kPa}
$$

2. The pressure of a mixture of nitrogen, carbon dioxide, and oxygen is 150.0 kPa . What is the partial pressure of oxygen if the partial pressures of the nitrogen and carbon dioxide are 100.0 kPa and 24.0 kPa , respectively?

$$
\begin{gathered}
P_{T}=P_{N 2}+P_{O 2}+P_{C O 2} \\
150.0=100.0+24.0+P_{C O 2} \\
P_{C O 2}=26.0 \mathrm{kPa}
\end{gathered}
$$

